25 research outputs found

    Ancient Documents Denoising and Decomposition Using Aujol and Chambolle Algorithm

    No full text
    With the improvement of printing technology since the 15th century, there is a huge amount of printed documents published and distributed. These documents are degraded by the time and require to be preprocessed before being submitted to image indexing strategy, in order to enhance the quality of images. This paper proposes a new pre-processing that permits to denoise these documents, by using a Aujol and Chambolle algorithm. Aujol and Chambolle algorithm allows to extract meaningful components from image. In this case, we can extract shapes, textures and noise. Some examples of specific processings applied on each layer are illustrated in this paper

    Optimization of Divergences Within the Exponential Family for Image Segmentation

    Get PDF
    International audienceIn this work, we propose novel results for the optimization of divergences within the framework of region-based active contours. We focus on parametric statistical models where the region descriptor is chosen as the probability density function (pdf) of an image feature (e.g. intensity) inside the region and the pdf belongs to the exponential family. The optimization of divergences appears as a flexible tool for segmentation with and without intensity prior. As far as segmentation without reference is concerned, we aim at maximizing the discrepancy between the pdf of the inside region and the pdf of the outside region. Moreover, since the optimization framework is performed within the exponential family, we can cope with difficult segmentation problems including various noise models (Gaussian, Rayleigh, Poisson, Bernoulli ...). We also experimentally show that the maximisation of the KL divergence offers interesting properties compare to some other data terms (e.g. minimization of the anti-log-likelihood). Experimental results on medical images (brain MRI, contrast echocardiography) confirm the applicability of this general setting

    Low Complexity Regularization of Linear Inverse Problems

    Full text link
    Inverse problems and regularization theory is a central theme in contemporary signal processing, where the goal is to reconstruct an unknown signal from partial indirect, and possibly noisy, measurements of it. A now standard method for recovering the unknown signal is to solve a convex optimization problem that enforces some prior knowledge about its structure. This has proved efficient in many problems routinely encountered in imaging sciences, statistics and machine learning. This chapter delivers a review of recent advances in the field where the regularization prior promotes solutions conforming to some notion of simplicity/low-complexity. These priors encompass as popular examples sparsity and group sparsity (to capture the compressibility of natural signals and images), total variation and analysis sparsity (to promote piecewise regularity), and low-rank (as natural extension of sparsity to matrix-valued data). Our aim is to provide a unified treatment of all these regularizations under a single umbrella, namely the theory of partial smoothness. This framework is very general and accommodates all low-complexity regularizers just mentioned, as well as many others. Partial smoothness turns out to be the canonical way to encode low-dimensional models that can be linear spaces or more general smooth manifolds. This review is intended to serve as a one stop shop toward the understanding of the theoretical properties of the so-regularized solutions. It covers a large spectrum including: (i) recovery guarantees and stability to noise, both in terms of â„“2\ell^2-stability and model (manifold) identification; (ii) sensitivity analysis to perturbations of the parameters involved (in particular the observations), with applications to unbiased risk estimation ; (iii) convergence properties of the forward-backward proximal splitting scheme, that is particularly well suited to solve the corresponding large-scale regularized optimization problem

    On a coupled PDE model for image restoration

    Full text link
    In this paper, we consider a new coupled PDE model for image restoration. Both the image and the edge variables are incorporated by coupling them into two different PDEs. It is shown that the initial-boundary value problem has global in time dissipative solutions (in a sense going back to P.-L. Lions), and several properties of these solutions are established. This is a rough draft, and the final version of the paper will contain a modelling part and numerical experiments

    Locally Parallel Textures Modeling with Adapted Hilbert Spaces

    No full text
    This article presents a new adaptive texture model. Locally parallel oscillating patterns are modeled with a weighted Hilbert space defined over local Fourier coefficients. The weights on the local Fourier atoms are optimized to match the local orientation and frequency of the texture. We propose an adaptive method to decompose an image into a cartoon layer and a locally parallel texture layer using this model and a total variation cartoon model. This decomposition method is then used to denoise an image containing oscillating patterns. Finally we show how to take advantage of such a separation framework to simultaneously inpaint the structure and texture components of an image with missing parts. Numerical results show that our method improves state of the art algorithms for directional and complex textures.ou
    corecore